Algebraic Topology: A First Course This is a good book if you have some prior knowledge in the subject. So if you have already read a bit about the subject and want to learn more, buy it. The author appears to know how to position material to make it interesting to on board a reader but it can a bit long winded and abstract towards the end. A Concise Course in Algebraic Topology Like the above, only a basic introduction to algebraic topology is needed to get started with this book. Check for the version or edition of the book, and buy the latest one. The book has some typos which will be corrected in the latest version. The homework problems in the book can get very demanding. Algebraic Topology See this book as a go-between undergraduate and graduate levels for the subject. The book starts off well by giving an overview and introduction to topology but gets complex towards the later chapters. Algebraic Topology 1st Edition Think carefully before you buy this book, becaus
This is a write up to describe an algorithm described in an ancient Indian manuscript. Its called the Bhakshali manuscript. The manuscript describes some mathematical assertions, methods and algorithms that has been dated to several thousands years ago. A really cool algorithm described in that manuscript is an approximation for finding the square root of a number. What I liked about this algorithm is that its handy. You could quickly approximate the square root of a real number with just some basic division and addition. This is how the algorithm works: If 'X' is the number you want to find a square root of, find the nearest whole number 'N' that approximates it. So if X = 23.2 then N = 5. Find the difference between X and N*N. Call it D. In this case it works out to -1.8. This should be too tedious to work out either. Now comes the magical part, divide this difference (D) by 2*N. So that's -1.8/10. Again, this shouldn't be that difficult to do in you