Skip to main content

The Chakravala Algorithm in R




submit to reddit

A class of analysis that has piqued the interest of mathematicians across millennia are Diophantine equations. Diophantine equations are polynomials with multiple variables and seek integer solutions. A special case of Diophantine equations is the Pell's equation. The name is a bit of a misnomer as Euler mistakenly attributed it to the mathematician John Pell. The problem seeks integer solutions to the polynomial
$$
x^{2} - Dy^{2} = 1
$$
Several ancient mathematicians have attempted to study and find generic solutions to Pell's equation. The best known algorithm is the Chakravala algorithm discovered by Bhaskara circa 1114 AD. Bhaskara implicitly credits Brahmagupta (circa 598 AD) for it initial discovery, though some credit it to Jayadeva too. Several Sanskrit words used to describe the algorithm appear to have changed in the 500 years between the two implying other contributors. The Chakravala technique is simple and implementing it in any programming language should be a breeze (credit citation)

Diophantine Equations (Pure & Applied Mathematics)


The method works as follows. Find a trivial solution to the equation. \(x=1,y=0\) can be used all the time. Next, initialize two parameters \([p_i,k_i]\) where \(i\) is an iteration count. \(p_i\) is updated to \(p_{i+1}\) if the following two criteria are satisfied.
  • \(p_i + p_{i+1} mod  k_{i} = 0\) i.e. \(p_i + p_{i+1}\) is divisible by \(k_i\)
  • \(| p_{i+1} - d |^{2}\) is minimized
After updating \(p_{i+1}\) \(k_{i+1}\) is found by evaluating
$$
k_{i+1} = \frac{p_{i+1}^{2} - d}{k_{i}}
$$
and the next pair of values for \([x,y]\) is computed as
$$
x_{i+1} = \frac{p_{i+1}x_i + dy_{i}}{|k_{i}|}
y_{i+1} = \frac{p_{i+1}y_i + x_{i}}{|k_{i}|}
$$
The algorithm also has an easy way to check if the found solution is a solution. It does so by only accepting values where \(k_{i} = 1\).

A screen grab of the entire algorithm done in R is shown below.


A Related Puzzle:
A drawer has \(x\) black socks and \(y\) white socks. You draw two socks consecutively and they are both black. You repeat this several times (by replacing the socks) and find that you get a pair of blacks with probability \(\frac{1}{2}\). You know that there are no more than 30 socks in the draw in total. How many black and white socks are there?

The probability that you would draw two black socks in a row is
$$
P = \frac{x}{x+y}\times\frac{x - 1}{x+y - 1} = \frac{1}{2}
$$
Simplifying and solving for \(x\) yields
$$
x^{2} - (2y + 1)x + y - y^2 = 0
$$
which on further simplification gives
$$
x = \frac{2y + 1 \pm \sqrt{(2y+1)^2 +4(y^2 - y)}}{2}
$$
We can ignore the root with the negative sign as it would yield a negative value for \(x\) which is impossible. The positive root of the quadratic equation yields
$$
x = \frac{2y + 1 + \sqrt{8y^2 + 1}}{2}
$$
For \(x\) to be an integer, the term \(\sqrt{8y^2 + 1}\) has to be an odd integer number \(z\) (say). We can now write it out as
$$
z = \sqrt{8y^2 + 1}
$$
or
$$
z^{2} - 8y^2 = 1
$$
This is Pell's equation (or Vargaprakriti in Sanskrit).
As we know that there are no more than 30 socks in the draw, we can quickly work our way to two admissible solutions to the problem \(\{3,1\}, \{15,6\}\).
If you are looking to buy books on probability theory here is a good list to own.
If you are looking to buy books on time series analysis here is an excellent list to own.

Comments

Popular posts from this blog

The Best Books to Learn Probability

If you are looking to buy some books in probability here are some of the best books to learn the art of Probability

The Probability Tutoring Book: An Intuitive Course for Engineers and Scientists (and Everyone Else!)
A good book for graduate level classes: has some practice problems in them which is a good thing. But that doesn't make this book any less of buy for the beginner.

An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition
This is a two volume book and the first volume is what will likely interest a beginner because it covers discrete probability. The book tends to treat probability as a theory on its own

Discovering Statistics Using R
This is a good book if you are new to statistics & probability while simultaneously getting started with a programming language. The book supports R and is written in a casual humorous way making it an easy read. Great for beginners. Some of the data on the companion website could be missing.

Fifty Challenging Probl…

The Three Magical Boxes



Q: You are playing a game wherein you are presented 3 magical boxes. Each box has a set probability of delivering a gold coin when you open it. On a single attempt, you can take the gold coin and close the box. In the next attempt you are free to either open the same box again or pick another box. You have a 100 attempts to open the boxes. You do not know what the win probability is for each of the boxes. What would be a strategy to maximize your returns?

Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series)

A: Problems of this type fall into a category of algorithms called "multi armed bandits". The name has its origin in casino slot machines wherein a bandit is trying to maximize his returns by pulling different arms of a slot machine by using several "arms". The dilemma he faces is similar to the game described above. Notice, the problem is a bit different from a typical estimation exercise. You co…

The Best Books for Time Series Analysis


If you are looking to learn time series analysis, the following are some of the best books in time series analysis.

Introductory Time Series with R (Use R!)
This is good book to get one started on time series. A nice aspect of this book is that it has examples in R and some of the data is part of standard R packages which makes good introductory material for learning the R language too. That said this is not exactly a graduate level book, and some of the data links in the book may not be valid.

Econometrics
A great book if you are in an economics stream or want to get into it. The nice thing in the book is it tries to bring out a oneness in all the methods used. Econ majors need to be up-to speed on the grounding mathematics for time series analysis to use this book. Outside of those prerequisites, this is one of the best books on econometrics and time series analysis.

Pattern Recognition and Machine Learning (Information Science and Statistics)
This is excelle…